AmazonSageMaker
data-transfer
Hst:Data-Bytes-In
The amount of data (in bytes) transferred into an Amazon SageMaker real-time endpoint.
Hst:Data-Bytes-Out
The amount of data (in bytes) transferred out of an Amazon SageMaker real-time endpoint.
DataTransfer-Regional-Bytes
The amount of data (in bytes) transferred within the same Availability Zone.
DataTransfer-In-Bytes
The amount of data (in bytes) transferred into AWS from the internet. Data transferred into AWS does not incur a fee.
DataTransfer-Out-Bytes
The amount of data (in bytes) transferred out of AWS to the internet.
storage
Host:VolumeUsage
Refers to the underlying hosting instance where the volume is attached. In the context of SageMaker, this could be a notebook instance, training job, or hosting endpoint that uses EBS volumes for storage.
- EU-Host:VolumeUsage.gp2
- USE1-Host:VolumeUsage.gp2
- USW2-Host:VolumeUsage.gp2
- APN1-Host:VolumeUsage.gp2
- EUC1-Host:VolumeUsage.gp2
- APS2-Host:VolumeUsage.gp2
- USW1-Host:VolumeUsage.gp2
- UGW1-Host:VolumeUsage.gp2
- APS3-Host:VolumeUsage.gp2
- APN2-Host:VolumeUsage.gp2
- USE2-Host:VolumeUsage.gp2
- CAN1-Host:VolumeUsage.gp2
- APS1-Host:VolumeUsage.gp2
- EUW2-Host:VolumeUsage.gp2
- EUW3-Host:VolumeUsage.gp2
- EUN1-Host:VolumeUsage.gp2
Studio:VolumeUsage
Studio volume charges. Based on the size of the volume and the duration of usage.
- EU-Studio:VolumeUsage.gp3
- APN1-Studio:VolumeUsage.gp3
- USW2-Studio:VolumeUsage.gp3
- USE2-Studio:VolumeUsage.gp3
- USE1-Studio:VolumeUsage.gp3
- EUC1-Studio:VolumeUsage.gp3
- APS2-Studio:VolumeUsage.gp3
- APN2-Studio:VolumeUsage.gp3
- EUN1-Studio:VolumeUsage.gp3
- APS3-Studio:VolumeUsage.gp3
- CAN1-Studio:VolumeUsage.gp3
- USW1-Studio:VolumeUsage.gp3
- EUW2-Studio:VolumeUsage.gp3
Notebk:VolumeUsage
SageMaker Jupyter Notebook volume usage charges. Based on the size of the volume and the duration of usage.
- APN1-Notebk:VolumeUsage.gp2
- USE1-Notebk:VolumeUsage.gp2
- USW2-Notebk:VolumeUsage.gp2
- APS2-Notebk:VolumeUsage.gp2
- USE2-Notebk:VolumeUsage.gp2
- USW1-Notebk:VolumeUsage.gp2
- UGW1-Notebk:VolumeUsage.gp2
- APS1-Notebk:VolumeUsage.gp2
- EU-Notebk:VolumeUsage.gp2
- MEC1-Notebk:VolumeUsage.gp2
- EUN1-Notebk:VolumeUsage.gp2
- EUC1-Notebk:VolumeUsage.gp2
- APS3-Notebk:VolumeUsage.gp2
- EUW2-Notebk:VolumeUsage.gp2
- APN2-Notebk:VolumeUsage.gp2
- SAE1-Notebk:VolumeUsage.gp2
Train:VolumeUsage
Training volume usage charges. Built-in rule storage volumes have no additional charges.
Processing:VolumeUsage
Processing usage charges. For running pre-processing, post-processing, and model evaluation tasks on fully managed infrastructure. Based on the size of the volume and the duration of usage.
Processing_DW:VolumeUsage
Data Wrangler processing jobs volume usage charges. Based on the size of the volume and the duration of usage
TrainDebugFreeTier:VolumeUsage
Free Tier volume usage for Training Debugger. 50 hours of m4.xlarge or m5.xlarge instance usage included for first 2 months.
Cluster:VolumeUsage
Cluster volume charges. Based on the size of the volume and the duration of usage.
TrainWarmPool:VolumeUsage
Volume usage charge for training warm pools. A training warm pool allows you to keep trained models and related resources, such as compute instances, ready for use in case you need to retrain or make updates to the model quickly. By maintaining this "warm" state, you can avoid the need to fully launch and initialize resources each time. Based on the size of the volume and the duration of usage.
ml-instance
Host:ml
Specifies that the instance is being used for hosting a deployed machine learning model in Amazon SageMaker. Pricing is based on the selected instance type.
- USE1-Host:ml.m5.xlarge
- USW2-Host:ml.c5.4xlarge
- USW2-Host:ml.g5.xlarge
- USE1-Host:ml.m4.xlarge
- USW2-Host:ml.g4dn.xlarge
- USW2-Host:ml.m5.xlarge
- EU-Host:ml.g5.2xlarge
- EU-Host:ml.m5.2xlarge
- EU-Host:ml.g5.4xlarge
- USE1-Host:ml.p3.2xlarge
- EU-Host:ml.g4dn.2xlarge
- EU-Host:ml.m5.xlarge
- USE1-Host:ml.r5.large
- USE1-Host:ml.t2.large
- USW2-Host:ml.m5.2xlarge
- USW2-Host:ml.m5.large
- USW2-Host:ml.r5.xlarge
- APN1-Host:ml.t2.medium
- USE1-Host:ml.c5.xlarge
- USE1-Host:ml.t2.medium
- USW2-Host:ml.m4.xlarge
- USE1-Host:ml.c4.2xlarge
- USE1-Host:ml.c5.2xlarge
- USE1-Host:ml.c5.large
- USE1-Host:ml.m5.2xlarge
- EUS1-Host:ml.g4dn.xlarge
- EU-Host:ml.g5.2xlarge
- EU-Host:ml.g4dn.2xlarge
- EU-Host:ml.g4dn.xlarge
- EU-Host:ml.g5.4xlarge
- EU-Host:ml.m5.2xlarge
- EU-Host:ml.m5.xlarge
- EU-Host:ml.g4dn.4xlarge
- USE1-Host:ml.p3.2xlarge
- USW2-Host:ml.c6i.xlarge
- USW2-Host:ml.c6i.4xlarge
- USE1-Host:ml.r5.4xlarge
- USW2-Host:ml.c6i.xlarge
- USW2-Host:ml.c5.xlarge
- USW2-Host:ml.c5.2xlarge
- USE1-Host:ml.c5.xlarge
- USW2-Host:ml.c5.4xlarge
- USW2-Host:ml.c5.large
- USE1-Host:ml.c5.large
- USW2-Host:ml.g5.12xlarge
- USE1-Host:ml.t2.2xlarge
- USE1-Host:ml.m5.large
- USE1-Host:ml.c5.4xlarge
- EUC1-Host:ml.m5.xlarge
- APN1-Host:ml.m5.2xlarge
- USW2-Host:ml.c6i.4xlarge
- USE1-Host:ml.g4dn.2xlarge
- APS2-Host:ml.m5.large
- USW2-Host:ml.m5.4xlarge
- APN1-Host:ml.m5.large
- USW2-Host:ml.m5.12xlarge
- USE1-Host:ml.m4.2xlarge
- USW2-Host:ml.t2.medium
- USE1-Host:ml.g5.xlarge
- USE1-Host:ml.g4dn.xlarge
- USW2-Host:ml.c5.9xlarge
- USW2-Host:ml.g4dn.4xlarge
- USW1-Host:ml.m5.xlarge
- USE1-Host:ml.g5.4xlarge
- USE1-Host:ml.g5.8xlarge
- UGW1-Host:ml.g5.xlarge
- USE1-Host:ml.c5.2xlarge
- USW2-Host:ml.m5d.large
- USW2-Host:ml.c6i.large
- USW2-Host:ml.c6i.2xlarge
- UGW1-Host:ml.t2.medium
- APS3-Host:ml.c5.2xlarge
- USE2-Host:ml.g5.2xlarge
- USW2-Host:ml.t2.medium
- USW2-Host:ml.c4.xlarge
- USW2-Host:ml.m4.xlarge
- USW2-Host:ml.g4dn.xlarge
- USW2-Host:ml.g5.4xlarge
- USW2-Host:ml.m5.large
- USW2-Host:ml.m5.xlarge
- USW2-Host:ml.m5.2xlarge
- USE1-Host:ml.g5.2xlarge
- APS2-Host:ml.t2.medium
- USW2-Host:ml.c5.2xlarge
- USW2-Host:ml.t2.large
- USE1-Host:ml.c5.4xlarge
- APN1-Host:ml.c4.xlarge
- APN1-Host:ml.m4.xlarge
- APN1-Host:ml.t2.large
- USE2-Host:ml.m4.xlarge
- USE2-Host:ml.t2.medium
- USW2-Host:ml.g6.xlarge
- CAN1-Host:ml.g5.xlarge
- CAN1-Host:ml.m5.large
- USE2-Host:ml.m5.large
- APN1-Host:ml.m5.large
- APN1-Host:ml.t2.medium
- APS3-Host:ml.t2.medium
- USE1-Host:ml.g4dn.xlarge
- USE1-Host:ml.c6i.xlarge
- USE1-Host:ml.g5.xlarge
- USE1-Host:ml.c6i.large
- USE1-Host:ml.c7g.large
- USE1-Host:ml.c7g.2xlarge
- USE1-Host:ml.c7g.xlarge
- USW2-Host:ml.c6i.2xlarge
- APS1-Host:ml.r5.xlarge
- EUW2-Host:ml.t2.medium
- EUW2-Host:ml.m5.large
- EU-Host:ml.m5.large
- USE1-Host:ml.r5.xlarge
- USE1-Host:ml.m5.12xlarge
- EU-Host:ml.r5.xlarge
- USE1-Host:ml.c7g.2xlarge
- USW2-Host:ml.g5.4xlarge
- EU-Host:ml.g4dn.xlarge
- EU-Host:ml.t2.medium
- USE2-Host:ml.g4dn.xlarge
- EU-Host:ml.g5.xlarge
- EU-Host:ml.t2.large
- EU-Host:ml.t2.xlarge
- USW2-Host:ml.g6e.xlarge
- APN2-Host:ml.t2.large
- USE1-Host:ml.c7g.xlarge
- USE1-Host:ml.r5.xlarge
- USE1-Host:ml.m5.12xlarge
- EUW3-Host:ml.c6i.4xlarge
- APN1-Host:ml.r5.xlarge
- APN1-Host:ml.c5.4xlarge
- APN1-Host:ml.c6i.4xlarge
- APN1-Host:ml.c6i.large
- APN1-Host:ml.c5.large
- APN1-Host:ml.c6i.8xlarge
- APS3-Host:ml.c5.xlarge
- USW2-Host:ml.c4.2xlarge
- APS2-Host:ml.m5.xlarge
- USW2-Host:ml.c4.xlarge
- USW2-Host:ml.g6.12xlarge
- APN1-Host:ml.p3.2xlarge
- APN1-Host:ml.g4dn.2xlarge
- APN1-Host:ml.r5.2xlarge
- EUC1-Host:ml.g4dn.xlarge
- USE1-Host:ml.m4.xlarge
- USE1-Host:ml.m4.2xlarge
- USW2-Host:ml.c4.2xlarge
- USE1-Host:ml.t2.2xlarge
- USW2-Host:ml.m5d.large
- APN1-Host:ml.g5.4xlarge
- USW2-Host:ml.t2.xlarge
- APS1-Host:ml.c5.2xlarge
- EU-Host:ml.m5.large
- CAN1-Host:ml.t2.medium
- CAN1-Host:ml.m4.xlarge
- CAN1-Host:ml.m5.xlarge
- USE1-Host:ml.inf1.xlarge
- USE1-Host:ml.inf1.2xlarge
- APN1-Host:ml.m6g.large
- USE2-Host:ml.c6i.xlarge
- USE2-Host:ml.g4dn.2xlarge
- USE2-Host:ml.c5.large
- USE2-Host:ml.c5.2xlarge
- USE2-Host:ml.c6i.32xlarge
- USE2-Host:ml.c5.18xlarge
- USE2-Host:ml.c6i.16xlarge
- USE2-Host:ml.c6i.8xlarge
- USE2-Host:ml.c5.4xlarge
- USW2-Host:ml.m6g.large
- USE1-Host:ml.c6i.2xlarge
- EUW2-Host:ml.m4.xlarge
- APN1-Host:ml.g4dn.xlarge
- EUN1-Host:ml.m5.xlarge
- EU-Host:ml.c6i.xlarge
- USW2-Host:ml.g5.xlarge
- USE1-Host:ml.m5.xlarge
- USW2-Host:ml.r5.xlarge
- USW2-Host:ml.m5.12xlarge
- USE1-Host:ml.m5.large
- USE1-Host:ml.g4dn.2xlarge
- EUC1-Host:ml.g5.xlarge
- USE2-Host:ml.p3.2xlarge
- USE2-Host:ml.p3.8xlarge
- USE1-Host:ml.m5.4xlarge
- CAN1-Host:ml.c5.large
- CAN1-Host:ml.c5.xlarge
- CAN1-Host:ml.g4dn.xlarge
- CAN1-Host:ml.g4dn.2xlarge
- CAN1-Host:ml.c5.2xlarge
- APN1-Host:ml.m5.xlarge
- USE1-Host:ml.g5.2xlarge
- APN1-Host:ml.m5.2xlarge
- EUN1-Host:ml.m5.large
- USE2-Host:ml.m5.large
- USE1-Host:ml.m5.2xlarge
- USW2-Host:ml.c5.9xlarge
- APN1-Host:ml.c4.xlarge
Studio:JupyterLab
Studio IDE for notebooks and code. Pricing is based on the selected instance type.
- EU-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.m5.8xlarge
- USE1-Studio:JupyterLab-ml.c6i.24xlarge
- USE1-Studio:JupyterLab-ml.t3.medium
- APN1-Studio:JupyterLab-ml.m5.2xlarge
- USW2-Studio:JupyterLab-ml.m5.2xlarge
- USW2-Studio:JupyterLab-ml.t3.medium
- EUC1-Studio:JupyterLab-ml.m5.2xlarge
- EUC1-Studio:JupyterLab-ml.m5.large
- EUC1-Studio:JupyterLab-ml.m5.4xlarge
- EUC1-Studio:JupyterLab-ml.r5.xlarge
- APS2-Studio:JupyterLab-ml.t3.medium
- APN1-Studio:JupyterLab-ml.t3.medium
- USW2-Studio:JupyterLab-ml.m5.4xlarge
- USW2-Studio:JupyterLab-ml.t3.large
- USW2-Studio:JupyterLab-ml.m5.24xlarge
- USW2-Studio:JupyterLab-ml.g5.8xlarge
- USW2-Studio:JupyterLab-ml.m5.16xlarge
- USW2-Studio:JupyterLab-ml.m5d.16xlarge
- USW2-Studio:JupyterLab-ml.m5.8xlarge
- EUC1-Studio:JupyterLab-ml.r5.2xlarge
- EUC1-Studio:JupyterLab-ml.g5.2xlarge
- EUC1-Studio:JupyterLab-ml.m5.8xlarge
- EUC1-Studio:JupyterLab-ml.r5.8xlarge
- USW2-Studio:JupyterLab-ml.m5.large
- APN2-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.c6i.32xlarge
- APN1-Studio:JupyterLab-ml.r5.2xlarge
- USE1-Studio:JupyterLab-ml.c6id.24xlarge
- USE1-Studio:JupyterLab-ml.m5.2xlarge
- EUC1-Studio:JupyterLab-ml.t3.xlarge
- EUC1-Studio:JupyterLab-ml.t3.2xlarge
- USE2-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.m5.large
- USE1-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.m5.16xlarge
- USE1-Studio:JupyterLab-ml.t3.large
- USE1-Studio:JupyterLab-ml.m5.4xlarge
- USE1-Studio:JupyterLab-ml.t3.2xlarge
- USE1-Studio:JupyterLab-ml.m6i.32xlarge
- EUC1-Studio:JupyterLab-ml.m5.xlarge
- EUC1-Studio:JupyterLab-ml.t3.large
- USE1-Studio:JupyterLab-ml.c7i.48xlarge
- USE1-Studio:JupyterLab-ml.g4dn.2xlarge
- USE1-Studio:JupyterLab-ml.r6i.8xlarge
- USE1-Studio:JupyterLab-ml.m7i.48xlarge
- USE1-Studio:JupyterLab-ml.g4dn.xlarge
- USE1-Studio:JupyterLab-ml.c5.18xlarge
- USE1-Studio:JupyterLab-ml.m5.24xlarge
- USE1-Studio:JupyterLab-ml.c6i.16xlarge
- USW2-Studio:JupyterLab-ml.m5.12xlarge
- USW2-Studio:JupyterLab-ml.m5.large
- USW2-Studio:JupyterLab-ml.m6i.24xlarge
- USW2-Studio:JupyterLab-ml.m6id.24xlarge
- USE1-Studio:JupyterLab-ml.c7i.4xlarge
- USW2-Studio:JupyterLab-ml.m7i.48xlarge
- EUN1-Studio:JupyterLab-ml.t3.medium
- USW2-Studio:JupyterLab-ml.t3.large
- USW2-Studio:JupyterLab-ml.t3.medium
- USW2-Studio:JupyterLab-ml.m5.2xlarge
- APN2-Studio:JupyterLab-ml.m5.large
- USE1-Studio:JupyterLab-ml.g6e.4xlarge
- EUC1-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.g6.4xlarge
- USE1-Studio:JupyterLab-ml.p4d.24xlarge
- USE1-Studio:JupyterLab-ml.g6.24xlarge
- USE1-Studio:JupyterLab-ml.t3.xlarge
- USE1-Studio:JupyterLab-ml.c5.12xlarge
- USW2-Studio:JupyterLab-ml.m5.4xlarge
- USW2-Studio:JupyterLab-ml.m5.24xlarge
- USW2-Studio:JupyterLab-ml.m5.16xlarge
- USW2-Studio:JupyterLab-ml.m5.12xlarge
- USW2-Studio:JupyterLab-ml.m5d.16xlarge
- USW2-Studio:JupyterLab-ml.m5.8xlarge
- USW2-Studio:JupyterLab-ml.r5.24xlarge
- USW2-Studio:JupyterLab-ml.m6i.24xlarge
- USW2-Studio:JupyterLab-ml.m6id.24xlarge
- USW2-Studio:JupyterLab-ml.m7i.48xlarge
- USW2-Studio:JupyterLab-ml.r5.12xlarge
- USW2-Studio:JupyterLab-ml.m6i.32xlarge
- USW2-Studio:JupyterLab-ml.r6i.32xlarge
- CAN1-Studio:JupyterLab-ml.t3.medium
- USE1-Studio:JupyterLab-ml.c7i.8xlarge
- USE1-Studio:JupyterLab-ml.p3.2xlarge
- USE1-Studio:JupyterLab-ml.m7i.8xlarge
- USE2-Studio:JupyterLab-ml.t3.large
- USW2-Studio:JupyterLab-ml.r5.12xlarge
- USW2-Studio:JupyterLab-ml.r5.24xlarge
- USE1-Studio:JupyterLab-ml.m6i.8xlarge
- USE1-Studio:JupyterLab-ml.g6.xlarge
- USE1-Studio:JupyterLab-ml.g6e.xlarge
- USE1-Studio:JupyterLab-ml.g6e.2xlarge
- APN2-Studio:JupyterLab-ml.m7i.large
- USE1-Studio:JupyterLab-ml.p4de.24xlarge
- USE1-Studio:JupyterLab-ml.r5.xlarge
- APN2-Studio:JupyterLab-ml.g5.48xlarge
- USW2-Studio:JupyterLab-ml.g5.24xlarge
- APN1-Studio:JupyterLab-ml.t3.medium
- USW2-Studio:JupyterLab-ml.p3.8xlarge
- USW2-Studio:JupyterLab-ml.p3.8xlarge
- USW2-Studio:JupyterLab-ml.g5.48xlarge
- USE1-Studio:JupyterLab-ml.m5.8xlarge
- APN1-Studio:JupyterLab-ml.m5.2xlarge
Notebk:ml
Notebook instances that run in a Jupyter Notebook. Pricing is based on the selected instance type.
- APN1-Notebk:ml.t3.medium
- USE1-Notebk:ml.t3.xlarge
- APN1-Notebk:ml.t3.2xlarge
- USW2-Notebk:ml.t2.medium
- USW2-Notebk:ml.t3.medium
- APS2-Notebk:ml.r5.xlarge
- APS2-Notebk:ml.t3.medium
- USE1-Notebk:ml.t3.large
- USE1-Notebk:ml.t3.medium
- USE1-Notebk:ml.t2.xlarge
- USE1-Notebk:ml.t2.medium
- APN1-Notebk:ml.t2.medium
- USE1-Notebk:ml.m5.2xlarge
- USE2-Notebk:ml.t3.medium
- USE2-Notebk:ml.t2.medium
- USE1-Notebk:ml.m5.4xlarge
- USW2-Notebk:ml.c5.4xlarge
- APS1-Notebk:ml.t2.medium
- USE1-Notebk:ml.t2.large
- USE2-Notebk:ml.t2.large
- USW1-Notebk:ml.m5d.2xlarge
- APS2-Notebk:ml.t2.medium
- UGW1-Notebk:ml.t2.medium
- UGW1-Notebk:ml.t2.large
- USW2-Notebk:ml.t3.xlarge
- USE1-Notebk:ml.t3.2xlarge
- USE1-Notebk:ml.m5.12xlarge
- USW2-Notebk:ml.m5.4xlarge
- USW2-Notebk:ml.t3.2xlarge
- USE2-Notebk:ml.m5.xlarge
- EU-Notebk:ml.t2.xlarge
- EU-Notebk:ml.t2.large
- USE1-Notebk:ml.t2.medium
- USE1-Notebk:ml.m5.xlarge
- MEC1-Notebk:ml.g5.xlarge
- USE1-Notebk:ml.t3.medium
- USW2-Notebk:ml.t2.medium
- USW2-Notebk:ml.t3.medium
- USW2-Notebk:ml.t2.large
- USW2-Notebk:ml.m4.2xlarge
- USE2-Notebk:ml.m5d.large
- USW2-Notebk:ml.t3.2xlarge
- USW2-Notebk:ml.c5.xlarge
- USW2-Notebk:ml.m4.10xlarge
- EUN1-Notebk:ml.t3.medium
- USE1-Notebk:ml.m4.2xlarge
- USE1-Notebk:ml.m4.4xlarge
- USW2-Notebk:ml.m5.24xlarge
- USW2-Notebk:ml.m5.4xlarge
- USW2-Notebk:ml.m4.16xlarge
- USW2-Notebk:ml.m5.xlarge
- USW2-Notebk:ml.r5.24xlarge
- USW2-Notebk:ml.c5.18xlarge
- USW2-Notebk:ml.m5d.16xlarge
- USW2-Notebk:ml.r5.4xlarge
- USW2-Notebk:ml.r5.8xlarge
- USE2-Notebk:ml.t3.medium
- USW2-Notebk:ml.t3.xlarge
- USW2-Notebk:ml.m4.4xlarge
- APS1-Notebk:ml.t3.medium
- USW2-Notebk:ml.t3.large
- EUN1-Notebk:ml.m5.xlarge
- EUN1-Notebk:ml.t3.xlarge
- EUC1-Notebk:ml.m5.12xlarge
- EUC1-Notebk:ml.r6i.32xlarge
- USE1-Notebk:ml.c5.4xlarge
- EUN1-Notebk:ml.m5.4xlarge
- EUN1-Notebk:ml.m5.12xlarge
- USE1-Notebk:ml.c5.9xlarge
- EUN1-Notebk:ml.t3.large
- EUN1-Notebk:ml.r5.xlarge
- EUN1-Notebk:ml.t3.2xlarge
- APN1-Notebk:ml.t2.medium
- APN1-Notebk:ml.t3.medium
- USE1-Notebk:ml.t3.large
- USE1-Notebk:ml.t3.xlarge
- APS3-Notebk:ml.t3.medium
- APS2-Notebk:ml.r5.4xlarge
- USE2-Notebk:ml.t3.large
- USE2-Notebk:ml.t3.2xlarge
- APS1-Notebk:ml.t3.2xlarge
- EUW2-Notebk:ml.t3.medium
- EU-Notebk:ml.t2.medium
- EU-Notebk:ml.t3.medium
- USE2-Notebk:ml.m5d.large
- EU-Notebk:ml.g4dn.2xlarge
- USE1-Notebk:ml.r7i.4xlarge
- USE1-Notebk:ml.m7i.4xlarge
- USE2-Notebk:ml.t2.xlarge
- USE2-Notebk:ml.m5.4xlarge
- APN2-Notebk:ml.t3.medium
- USE1-Notebk:ml.m5.24xlarge
- USE1-Notebk:ml.p3.8xlarge
- USE1-Notebk:ml.p3.2xlarge
- EUC1-Notebk:ml.t3.xlarge
- USW1-Notebk:ml.t3.medium
- USE2-Notebk:ml.p3.16xlarge
- USE2-Notebk:ml.p3.8xlarge
- UGW1-Notebk:ml.t2.2xlarge
- EUC1-Notebk:ml.t3.medium
- APN1-Notebk:ml.r5.16xlarge
- USE1-Notebk:ml.t2.2xlarge
- USE1-Notebk:ml.g4dn.2xlarge
- USE1-Notebk:ml.g4dn.xlarge
- APN1-Notebk:ml.r5.4xlarge
- APN2-Notebk:ml.t3.large
- USE2-Notebk:ml.r5.large
- EUN1-Notebk:ml.m5d.24xlarge
- SAE1-Notebk:ml.t3.medium
- SAE1-Notebk:ml.t3.large
- SAE1-Notebk:ml.m5d.8xlarge
- SAE1-Notebk:ml.t3.2xlarge
- SAE1-Notebk:ml.m5.4xlarge
- USW2-Notebk:ml.r5.16xlarge
- USW2-Notebk:ml.m4.10xlarge
- APN1-Notebk:ml.c5.18xlarge
- USW2-Notebk:ml.m5.2xlarge
- USE1-Notebk:ml.g5.24xlarge
- USW2-Notebk:ml.c5.4xlarge
- USE2-Notebk:ml.t2.medium
- USE1-Notebk:ml.r5.24xlarge
- USE1-Notebk:ml.r5.8xlarge
- APN2-Notebk:ml.g5.24xlarge
- USE1-Notebk:ml.g5.4xlarge
- USE1-Notebk:ml.g5.8xlarge
- USE1-Notebk:ml.g5.xlarge
- USE1-Notebk:ml.inf1.2xlarge
- APS2-Notebk:ml.g5.4xlarge
- USE1-Notebk:ml.g5.12xlarge
- USE1-Notebk:ml.g6.4xlarge
- USE1-Notebk:ml.g6.48xlarge
- USE1-Notebk:ml.g6.2xlarge
- USE1-Notebk:ml.m4.xlarge
- USE1-Notebk:ml.m5d.xlarge
- APN2-Notebk:ml.g5.2xlarge
- USE1-Notebk:ml.r7i.xlarge
- APS1-Notebk:ml.r5.large
- USW2-Notebk:ml.g5.xlarge
- USW2-Notebk:ml.p4d.24xlarge
- USW2-Notebk:ml.g5.12xlarge
- SAE1-Notebk:ml.g4dn.xlarge
- EUC1-Notebk:ml.m5.24xlarge
- APS3-Notebk:ml.c5.2xlarge
- EUC1-Notebk:ml.r5.24xlarge
- APN1-Notebk:ml.m5.12xlarge
- APN1-Notebk:ml.m4.4xlarge
- APN3-Notebk:ml.t3.medium
- USW2-Notebk:ml.m5.12xlarge
- EUC1-Notebk:ml.r7i.48xlarge
- EUC1-Notebk:ml.r7i.24xlarge
- USW2-Notebk:ml.g5.4xlarge
- APS2-Notebk:ml.g5.xlarge
- USW2-Notebk:ml.g5.2xlarge
- USW2-Notebk:ml.r5.2xlarge
- USW2-Notebk:ml.m5.2xlarge
- MEC1-Notebk:ml.g5.4xlarge
- EU-Notebk:ml.m5.xlarge
- APN2-Notebk:ml.t2.medium
- EU-Notebk:ml.g4dn.xlarge
- USE1-Notebk:ml.t3.2xlarge
- EUC1-Notebk:ml.t3.large
- USE2-Notebk:ml.m5.xlarge
- USE1-Notebk:ml.r7i.24xlarge
- EUC1-Notebk:ml.r6i.16xlarge
- USE1-Notebk:ml.g6.24xlarge
- USE1-Notebk:ml.g5.16xlarge
- USE1-Notebk:ml.g5.48xlarge
- APS2-Notebk:ml.g5.8xlarge
- USE1-Notebk:ml.c5d.18xlarge
- USW2-Notebk:ml.g4dn.2xlarge
- USE1-Notebk:ml.g5.2xlarge
- USE2-Notebk:ml.r5.8xlarge
- USW2-Notebk:ml.p4d.24xlarge
- USE1-Notebk:ml.c5.18xlarge
- USE1-Notebk:ml.m5.4xlarge
- USW1-Notebk:ml.m5d.2xlarge
- USW2-Notebk:ml.p4de.24xlarge
Studio:KernelGateway
Studio notebook usage costs. Pricing is based on the selected instance type.
- USE1-Studio:KernelGateway-ml.c5.large
- USE1-Studio:KernelGateway-ml.m5.large
- USE1-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.g4dn.2xlarge
- EU-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.t3.medium
- APN1-Studio:KernelGateway-ml.t3.medium
- EU-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.t3.2xlarge
- USW2-Studio:KernelGateway-ml.m5.large
- USW2-Studio:KernelGateway-ml.m5.8xlarge
- USW2-Studio:KernelGateway-ml.m5.4xlarge
- USW2-Studio:KernelGateway-ml.c5.large
- USW2-Studio:KernelGateway-ml.m5.12xlarge
- USW2-Studio:KernelGateway-ml.m5.16xlarge
- USW2-Studio:KernelGateway-ml.g4dn.xlarge
- USE1-Studio:KernelGateway-ml.m5.4xlarge
- UGW1-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.m5.xlarge
- USE2-Studio:KernelGateway-ml.t3.medium
- EUN1-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.c5.12xlarge
- EUW2-Studio:KernelGateway-ml.t3.medium
- APN1-Studio:KernelGateway-ml.m5.large
- USE2-Studio:KernelGateway-ml.t3.2xlarge
- USW2-Studio:KernelGateway-ml.g4dn.xlarge
- USW2-Studio:KernelGateway-ml.m5.4xlarge
- USW2-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.m5.8xlarge
- USW2-Studio:KernelGateway-ml.t3.2xlarge
- USW2-Studio:KernelGateway-ml.c5.large
- USW2-Studio:KernelGateway-ml.t3.large
- USW2-Studio:KernelGateway-ml.t3.xlarge
- USW2-Studio:KernelGateway-ml.m5.2xlarge
- USW2-Studio:KernelGateway-ml.m5d.8xlarge
- USW2-Studio:KernelGateway-ml.m5.large
- USW2-Studio:KernelGateway-ml.m5d.24xlarge
- USW2-Studio:KernelGateway-ml.m5.2xlarge
- USW2-Studio:KernelGateway-ml.m5d.8xlarge
- USW2-Studio:KernelGateway-ml.m5.12xlarge
- USW2-Studio:KernelGateway-ml.m5.16xlarge
- USW2-Studio:KernelGateway-ml.g5.24xlarge
- USW2-Studio:KernelGateway-ml.g5.48xlarge
- USW2-Studio:KernelGateway-ml.m5.24xlarge
- USW2-Studio:KernelGateway-ml.m5d.12xlarge
- USW2-Studio:KernelGateway-ml.m5.xlarge
- USW2-Studio:KernelGateway-ml.r5.24xlarge
- USW2-Studio:KernelGateway-ml.r5.2xlarge
- USW2-Studio:KernelGateway-ml.r5.8xlarge
- USW2-Studio:KernelGateway-ml.r5.4xlarge
- APN2-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.m5d.xlarge
- USW2-Studio:KernelGateway-ml.m5.24xlarge
- APN1-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.t3.xlarge
- USE1-Studio:KernelGateway-ml.t3.large
- USE2-Studio:KernelGateway-ml.m5.large
- USW2-Studio:KernelGateway-ml.t3.2xlarge
- APS2-Studio:KernelGateway-ml.t3.medium
- USW2-Studio:KernelGateway-ml.r5.12xlarge
- USW2-Studio:KernelGateway-ml.r5.16xlarge
- USW2-Studio:KernelGateway-ml.t3.xlarge
- USW2-Studio:KernelGateway-ml.m5.xlarge
- USW2-Studio:KernelGateway-ml.m5d.12xlarge
- USW2-Studio:KernelGateway-ml.m5d.4xlarge
- USE1-Studio:KernelGateway-ml.g4dn.xlarge
- USE1-Studio:KernelGateway-ml.g4dn.16xlarge
- USE1-Studio:KernelGateway-ml.t3.large
- USE1-Studio:KernelGateway-ml.m5.8xlarge
- USE1-Studio:KernelGateway-ml.g4dn.12xlarge
- USE1-Studio:KernelGateway-ml.g4dn.8xlarge
- USE1-Studio:KernelGateway-ml.t3.xlarge
- USW2-Studio:KernelGateway-ml.m5d.16xlarge
- USW2-Studio:KernelGateway-ml.c5.2xlarge
- USW2-Studio:KernelGateway-ml.c5.24xlarge
- USE1-Studio:KernelGateway-ml.c5.12xlarge
- USE1-Studio:KernelGateway-ml.t3.2xlarge
- USW2-Studio:KernelGateway-ml.m5d.24xlarge
- USW2-Studio:KernelGateway-ml.c5.18xlarge
- USW1-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.c5.18xlarge
- USE1-Studio:KernelGateway-ml.c5.9xlarge
- USE1-Studio:KernelGateway-ml.p3.8xlarge
- EUN1-Studio:KernelGateway-ml.g4dn.xlarge
- USW2-Studio:KernelGateway-ml.m5d.2xlarge
- USW2-Studio:KernelGateway-ml.g4dn.4xlarge
- USW2-Studio:KernelGateway-ml.m5d.4xlarge
- USW2-Studio:KernelGateway-ml.r5.xlarge
- USE1-Studio:KernelGateway-ml.g4dn.4xlarge
- USE1-Studio:KernelGateway-ml.m5d.8xlarge
- USE1-Studio:KernelGateway-ml.m5.12xlarge
- USE1-Studio:KernelGateway-ml.m5.2xlarge
- CAN1-Studio:KernelGateway-ml.t3.medium
- USE1-Studio:KernelGateway-ml.r5.12xlarge
- USE1-Studio:KernelGateway-ml.c5.24xlarge
- USE1-Studio:KernelGateway-ml.g5.12xlarge
- EU-Studio:KernelGateway-ml.m5.large
- EU-Studio:KernelGateway-ml.m5.2xlarge
- EU-Studio:KernelGateway-ml.m5.4xlarge
- USE1-Studio:KernelGateway-ml.g4dn.xlarge
- EUN1-Studio:KernelGateway-ml.m5.large
- USE1-Studio:KernelGateway-ml.g5.xlarge
- USE1-Studio:KernelGateway-ml.m5.large
- APN1-Studio:KernelGateway-ml.m5.large
Train:ml
Training models. Built-in rules are free. Custom rules are charged based on the selected instance type.
- EU-Train:ml.m5.xlarge
- USE1-Train:ml.p3.2xlarge
- USE1-Train:ml.p3.8xlarge
- EU-Train:ml.g4dn.4xlarge
- USE1-Train:ml.m5.4xlarge
- EU-Train:ml.m5.xlarge
- USE1-Train:ml.m5.large
- USE1-Train:ml.p3.2xlarge
- USW2-Train:ml.m5.large
- USW2-Train:ml.m5.xlarge
- USW2-Train:ml.c5.18xlarge
- USW2-Train:ml.m5.12xlarge
- EU-Train:ml.g4dn.4xlarge
- USW2-Train:ml.c4.xlarge
- USE1-Train:ml.m5.xlarge
- USE1-Train:ml.m5.12xlarge
- EUC1-Train:ml.m5.4xlarge
- EUC1-Train:ml.g5.4xlarge
- USE1-Train:ml.m4.xlarge
- APN1-Train:ml.m5.2xlarge
- APN1-Train:ml.m5.xlarge
- APN1-Train:ml.r5.2xlarge
- APN1-Train:ml.r5.xlarge
- USW2-Train:ml.m5.large
- USW2-Train:ml.m5.xlarge
- USW2-Train:ml.m5.4xlarge
- USW2-Train:ml.g5.48xlarge
- APS2-Train:ml.g4dn.xlarge
- USE1-Train:ml.c5.2xlarge
- USE2-Train:ml.m5.xlarge
- USW2-Train:ml.g5.16xlarge
- USW2-Train:ml.p3dn.24xlarge
- USE1-Train:ml.g5.8xlarge
- USW2-Train:ml.m5.24xlarge
- USW2-Train:ml.g5.2xlarge
- USW2-Train:ml.t3.xlarge
- USW2-Train:ml.m5.4xlarge
- USE1-Train:ml.c4.xlarge
- EUW2-Train:ml.m5.xlarge
- EUW2-Train:ml.t3.large
- EUW2-Train:ml.m5.large
- EUW2-Train:ml.m5.4xlarge
- APN1-Train:ml.m4.xlarge
- APN1-Train:ml.c4.xlarge
- USE1-Train:ml.r5.xlarge
- USE1-Train:ml.c5.18xlarge
- USE1-Train:ml.c5.9xlarge
- USW2-Train:ml.g4dn.2xlarge
- USE1-Train:ml.m5.2xlarge
- USE1-Train:ml.c5.18xlarge
- USE1-Train:ml.c5.9xlarge
- EU-Train:ml.g5.8xlarge
- EU-Train:ml.g5.4xlarge
- USE1-Train:ml.c5.xlarge
- USE1-Train:ml.c5.4xlarge
- APS3-Train:ml.m5.xlarge
- USW2-Train:ml.m5.12xlarge
- APN2-Train:ml.g4dn.4xlarge
- EU-Train:ml.g5.2xlarge
- USW2-Train:ml.g5.12xlarge
- USW2-Train:ml.c5.4xlarge
- USE1-Train:ml.c4.2xlarge
- EUW2-Train:ml.g4dn.xlarge
- USW2-Train:ml.m4.4xlarge
- USW2-Train:ml.m5.2xlarge
- USW2-Train:ml.c4.2xlarge
- USE1-Train:ml.g5.4xlarge
- USE1-Train:ml.g4dn.xlarge
- USW2-Train:ml.c5.2xlarge
- USW2-Train:ml.p3.2xlarge
- USE1-Train:ml.g4dn.2xlarge
- USW2-Train:ml.m5.24xlarge
- USW2-Train:ml.c5.9xlarge
- USW2-Train:ml.g4dn.xlarge
- USW2-Train:ml.g4dn.2xlarge
- USW2-Train:ml.g4dn.4xlarge
- USW2-Train:ml.g4dn.8xlarge
- USE1-Train:ml.m5.24xlarge
- USE1-Train:ml.m5.24xlarge
- CAN1-Train:ml.m5.large
- EUW3-Train:ml.m5.4xlarge
- USW2-Train:ml.c5.4xlarge
- USW2-Train:ml.t3.xlarge
- USW2-Train:ml.m5.2xlarge
- USE1-Train:ml.t3.large
- USW2-Train:ml.c5.xlarge
- APN1-Train:ml.m5.12xlarge
- EU-Train:ml.m5.large
- USE1-Train:ml.t3.xlarge
- EUN1-Train:ml.m5.xlarge
- EU-Train:ml.g5.16xlarge
- USE1-Train:ml.p4d.24xlarge
- USE1-Train:ml.g5.48xlarge
- USE1-Train:ml.p4de.24xlarge
- EU-Train:ml.m5.large
- USW2-Train:ml.c4.xlarge
- USW2-Train:ml.m4.xlarge
- USE1-Train:ml.m5.large
- EUN1-Train:ml.m5.4xlarge
- USW2-Train:ml.c5.18xlarge
Processing:ml
For running pre-processing, post-processing, and model evaluation tasks on fully managed infrastructure. Pricing is based on the selected instance type.
- USE1-Processing:ml.m5.4xlarge
- USE1-Processing:ml.m5.xlarge
- EU-Processing:ml.g4dn.4xlarge
- EU-Processing:ml.m5.12xlarge
- EU-Processing:ml.m5.2xlarge
- USE1-Processing:ml.m4.4xlarge
- USE1-Processing:ml.m5.large
- USE1-Processing:ml.m5.12xlarge
- USE1-Processing:ml.m5.2xlarge
- USE1-Processing:ml.g4dn.12xlarge
- USW2-Processing:ml.m5.xlarge
- EUC1-Processing:ml.m5.xlarge
- EUC1-Processing:ml.c5.2xlarge
- APS2-Processing:ml.m5.xlarge
- USW2-Processing:ml.m5.2xlarge
- USW2-Processing:ml.m5.4xlarge
- USW2-Processing:ml.r5.8xlarge
- USW2-Processing:ml.t3.medium
- USW2-Processing:ml.c4.4xlarge
- USW2-Processing:ml.r5.2xlarge
- EU-Processing:ml.m5.12xlarge
- EU-Processing:ml.g4dn.4xlarge
- USW2-Processing:ml.c4.4xlarge
- USW2-Processing:ml.m5.xlarge
- USW2-Processing:ml.m5.24xlarge
- EU-Processing:ml.m5.2xlarge
- USW2-Processing:ml.m5.4xlarge
- USW2-Processing:ml.m5.large
- USW2-Processing:ml.m5.12xlarge
- USW2-Processing:ml.p3.8xlarge
- USE1-Processing:ml.p3.2xlarge
- USE1-Processing:ml.c5.4xlarge
- USE1-Processing:ml.t3.large
- USE1-Processing:ml.t3.medium
- USW2-Processing:ml.r5.xlarge
- APN1-Processing:ml.m5.4xlarge
- EUC1-Processing:ml.m5.2xlarge
- USE1-Processing:ml.m5.24xlarge
- USE1-Processing:ml.c5.xlarge
- USE2-Processing:ml.m5.xlarge
- APN1-Processing:ml.m5.xlarge
- APS1-Processing:ml.r5.2xlarge
- APS1-Processing:ml.r5.8xlarge
- APS1-Processing:ml.t3.medium
- APS1-Processing:ml.r5.xlarge
- APS1-Processing:ml.c5.4xlarge
- APS1-Processing:ml.c5.xlarge
- APS1-Processing:ml.r5.large
- APS1-Processing:ml.r5.4xlarge
- APS1-Processing:ml.c5.2xlarge
- APS1-Processing:ml.c5.9xlarge
- USE1-Processing:ml.c5.2xlarge
- USE1-Processing:ml.c5.9xlarge
- USE1-Processing:ml.c5.18xlarge
- USW2-Processing:ml.m5.2xlarge
- EU-Processing:ml.m5.xlarge
- USE1-Processing:ml.c5.9xlarge
- USE1-Processing:ml.c5.18xlarge
- USE1-Processing:ml.c5.4xlarge
- EUC1-Processing:ml.m5.large
- USE1-Processing:ml.g4dn.xlarge
- APN1-Processing:ml.m5.2xlarge
- USW2-Processing:ml.r5.16xlarge
- USW2-Processing:ml.m5.24xlarge
- USE1-Processing:ml.m4.4xlarge
- USW2-Processing:ml.p3.8xlarge
- USE1-Processing:ml.m5.4xlarge
- APS1-Processing:ml.t3.large
- EU-Processing:ml.m5.large
- USW2-Processing:ml.m5.12xlarge
- APS2-Processing:ml.c5.18xlarge
- USE2-Processing:ml.t3.medium
- USE2-Processing:ml.t3.large
- EUN1-Processing:ml.m5.xlarge
- EUN1-Processing:ml.m5.4xlarge
Studio_DW:KernelGateway
Usage cost for Studio Data Wrangler. Pricing is based on the selected instance type.
Tsform:ml
Charges for transform jobs, indicating a Batch Transform job. Used to apply a trained model to datasets in bulk. Pricing is based on the selected instance type.
- USE1-Tsform:ml.m5.xlarge
- USW2-Tsform:ml.m5.large
- USW2-Tsform:ml.c4.4xlarge
- APS2-Tsform:ml.m5.xlarge
- USW2-Tsform:ml.m5.4xlarge
- USW2-Tsform:ml.m5.2xlarge
- USW2-Tsform:ml.c4.4xlarge
- USW2-Tsform:ml.c5.xlarge
- USW2-Tsform:ml.m4.4xlarge
- USW2-Tsform:ml.g4dn.xlarge
- USW2-Tsform:ml.m5.large
- USW2-Tsform:ml.m4.xlarge
- USW2-Tsform:ml.m4.4xlarge
- USE1-Tsform:ml.c5.4xlarge
- USW2-Tsform:ml.m4.xlarge
- USE1-Tsform:ml.m5.large
- EU-Tsform:ml.g4dn.xlarge
- USE1-Tsform:ml.m5.2xlarge
- USE1-Tsform:ml.m5.4xlarge
- EU-Tsform:ml.g4dn.2xlarge
- USE1-Tsform:ml.c5.2xlarge
- USW2-Tsform:ml.m5.xlarge
- USE1-Tsform:ml.m5.12xlarge
- USE1-Tsform:ml.m4.xlarge
- USE1-Tsform:ml.c5.4xlarge
- EU-Tsform:ml.m5.large
- EUN1-Tsform:ml.m5.xlarge
- EU-Tsform:ml.g4dn.4xlarge
Studio:CodeEditor
Code editor for ML code, integrated with Studio. Pricing is based on the selected instance type.
- USW2-Studio:CodeEditor-ml.t3.medium
- EUC1-Studio:CodeEditor-ml.t3.medium
- EUC1-Studio:CodeEditor-ml.t3.large
- USE1-Studio:CodeEditor-ml.t3.medium
- USW2-Studio:CodeEditor-ml.m5.2xlarge
- USW2-Studio:CodeEditor-ml.t3.2xlarge
- USW2-Studio:CodeEditor-ml.m5.xlarge
- USW2-Studio:CodeEditor-ml.g4dn.xlarge
- USW2-Studio:CodeEditor-ml.m5.4xlarge
- EUC1-Studio:CodeEditor-ml.g4dn.xlarge
- EUC1-Studio:CodeEditor-ml.t3.xlarge
- EUC1-Studio:CodeEditor-ml.m5.xlarge
- EUC1-Studio:CodeEditor-ml.m5.2xlarge
- USW2-Studio:CodeEditor-ml.m5.12xlarge
- USE2-Studio:CodeEditor-ml.t3.medium
- USW2-Studio:CodeEditor-ml.m5.8xlarge
- USE2-Studio:CodeEditor-ml.m5.xlarge
- USW2-Studio:CodeEditor-ml.m5.16xlarge
- USE1-Studio:CodeEditor-ml.g6.4xlarge
- USE1-Studio:CodeEditor-ml.g4dn.2xlarge
- USE1-Studio:CodeEditor-ml.g5.2xlarge
- USE1-Studio:CodeEditor-ml.g6.2xlarge
- USE1-Studio:CodeEditor-ml.m5.xlarge
- USE1-Studio:CodeEditor-ml.m5.2xlarge
- USE1-Studio:CodeEditor-ml.m5.large
- EUC1-Studio:CodeEditor-ml.m5.large
- APN2-Studio:CodeEditor-ml.t3.medium
- USW2-Studio:CodeEditor-ml.t3.medium
- USW2-Studio:CodeEditor-ml.m5.2xlarge
- USW2-Studio:CodeEditor-ml.m5d.16xlarge
- USW2-Studio:CodeEditor-ml.t3.2xlarge
- USW2-Studio:CodeEditor-ml.t3.large
- EUC1-Studio:CodeEditor-ml.m6i.2xlarge
- EUC1-Studio:CodeEditor-ml.g4dn.2xlarge
- EUC1-Studio:CodeEditor-ml.g4dn.4xlarge
- USW2-Studio:CodeEditor-ml.t3.large
- USW2-Studio:CodeEditor-ml.m5.large
- EU-Studio:CodeEditor-ml.t3.medium
- USW2-Studio:CodeEditor-ml.g4dn.xlarge
- USW2-Studio:CodeEditor-ml.m5.4xlarge
- APN2-Studio:CodeEditor-ml.m5.large
- USW2-Studio:CodeEditor-ml.t3.xlarge
- USW2-Studio:CodeEditor-ml.r5.large
- USW2-Studio:CodeEditor-ml.t3.xlarge
- USW2-Studio:CodeEditor-ml.m5.12xlarge
- CAN1-Studio:CodeEditor-ml.t3.medium
- USE1-Studio:CodeEditor-ml.t3.large
- USW2-Studio:CodeEditor-ml.m5.large
- APN1-Studio:CodeEditor-ml.t3.medium
- APN1-Studio:CodeEditor-ml.t3.large
AsyncInf:ml
Solution for handling inference requests by queuing and processing them asynchronously. This option is ideal for use cases involving large data payloads or models with lengthy processing times that do not require immediate response speeds. Pricing is based on the selected instance type.
TensorBoard:TensorBoard
Hosted TensorBoard solution for debugging model convergence issues in SageMaker training jobs. Pricing is based on the selected instance type.
Processing_DW:ml
Data Wrangler processing jobs. Job instance type pricing is calculated per instance hour.
TrainDebugFreeTier:ml
Free Tier charges for SageMaker Debugger. 50 hours of m4.xlarge or m5.xlarge usage per month for the first 2 months included with Free Tier.
TrSpt:ml
Training models that use managed EC2 Spot instances. Savings of up to 90% over on-demand instances. Pricing is based on the selected instance type.
Cluster:ml
Refers to the compute infrastructure or cluster used for a SageMaker job. This typically relates to managed training or inference clusters. Pricing is based on the selected instance type.
- USW2-Cluster:ml.p5.48xlarge
- USW2-Cluster:ml.m5.12xlarge
- USW2-Cluster:ml.m5.2xlarge
- USE2-Cluster:ml.c5.xlarge
- USE2-Cluster:ml.g5.2xlarge
- USE2-Cluster:ml.m5.large
- USE2-Cluster:ml.g5.12xlarge
- USE2-Cluster:ml.c5.2xlarge
- USE2-Cluster:ml.m5.4xlarge
- USE2-Cluster:ml.m5.24xlarge
- USE2-Cluster:ml.g5.16xlarge
- USE2-Cluster:ml.trn1.32xlarge
- USE2-Cluster:ml.g5.xlarge
- USW2-Cluster:ml.t3.medium
- USW2-Cluster:ml.p5.48xlarge
Cluster-C14-3Yr-NUP
Specific code for cluster. Pricing is based on the selected instance type.
amazon-sagemaker
MLflow:TrackingServerCompute
Per unit compute charge for server that's required to track ML experiments with SageMaker AI and MLflow. Pay only for what's used. Compute charges based on size and number of running hours.
automl-jobs
Canvas:Session-Hrs
Payment based on the number of hours you're logged in to or use SageMaker Canvas. Session hours are calculated from the time you log in to the time that you log out.
featurestore-storage
FeatureStore:TimedAndPITRStorage
Charges for Feature Store storage based on GB of data stored per month.
ml-serverless
ServerlessInf:Mem
Serverless Inference memory charge. Deploy models without needing to configure any infrastructure. Memory charges depend on size and price per millisecond.
- USE1-ServerlessInf:Mem-2GB
- USE1-ServerlessInf:Mem-4GB
- USE1-ServerlessInf:Mem-6GB
- USW2-ServerlessInf:Mem-2GB
- USE1-ServerlessInf:Mem-3GB
- USE2-ServerlessInf:Mem-4GB
- USE2-ServerlessInf:Mem-2GB
- USE2-ServerlessInf:Mem-6GB
- USE2-ServerlessInf:Mem-1GB
- EUW2-ServerlessInf:Mem-2GB
- EUW2-ServerlessInf:Mem-4GB
- EUW2-ServerlessInf:Mem-6GB
- EU-ServerlessInf:Mem-4GB
- EU-ServerlessInf:Mem-1GB
- APS3-ServerlessInf:Mem-3GB
- CAN1-ServerlessInf:Mem-6GB
- CAN1-ServerlessInf:Mem-4GB
- CAN1-ServerlessInf:Mem-5GB
- USE1-ServerlessInf:Mem-5GB
ProvisionedConcurrency:Mem
Provisioned Concurrency on Serverless Inference memory charge. Charges based on memory size.
ProvisionedConcurrency:Usage
Provisioned Concurrency on Serverless Inference usage charge. Charged per second of usage.
featurestore-payperrequestthroughput
FeatureStore:WriteRequestUnits
Write request charges for SageMaker Feature Store. Pricing varies for standard online store vs. in-memory online store. Standard on-demand and Standard in-memory pricing for writes is per million write request units. Standard provisioned is per write capacity unity (WCU) hour.
FeatureStore:ReadRequestUnits
Read request charges for SageMaker Feature Store. Pricing varies for standard online store vs. in-memory online store. Standard on-demand and Standard in-memory pricing for reads is per million read request units. Standard provisioned is per read capacity unit (RCU) hour.
fee
Geospatial:MonthlyUserFee
Monthly fee for Geospatial ML with Amazon SageMaker. Per user fee for access to SageMaker Studio notebook, which includes preloaded geospatial imagery. This fee also provides access to a geospatial data catalog and a dedicated geospatial container running on SageMaker Processing.